Rapid Solution of the Wave Equation in Unbounded Domains: Abridged Version

نویسندگان

  • L. Banjai
  • S. Sauter
چکیده

Abstract We propose and analyze a new fast method for the numerical solution of time-domain boundary integral formulations of the wave equation. Discretization in time is achieved by Lubich’s convolution quadrature method and in space by a Galerkin boundary element method. We show that the arising block Toeplitz system is after a small perturbation equivalent to a a decoupled system of discretized Helmholtz equations. Each of these systems can efficiently be solved by a fast data-sparse method (e.g. FMM, panel clustering). Further savings can be achieved by noticing that in some cases the solutions of many of the Helmholtz problems can be replaced by zero. Finally the proposed method is inherently parallel. We prove that the excellent stability and optimal convergence of the convolution quadrature are inherited by the new method. These results thereby pave the way to the efficient solution using fast data-sparse techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method

The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...

متن کامل

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Global existence‎, ‎stability results and compact invariant sets‎ ‎for a quasilinear nonlocal wave equation on $mathbb{R}^{N}$

We discuss the asymptotic behaviour of solutions for the nonlocal quasilinear hyperbolic problem of Kirchhoff Type [ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+delta u_{t}=|u|^{a}u,, x in mathbb{R}^{N} ,,tgeq 0;,]with initial conditions $u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; delta geq 0$ and $(phi (x))^{-1} =g (x)$  is a positive function lying in $L^{N/2}(mathb...

متن کامل

stability of the quadratic functional equation

In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007